Extensions 1→N→G→Q→1 with N=D4.S3 and Q=C22

Direct product G=N×Q with N=D4.S3 and Q=C22
dρLabelID
C22×D4.S396C2^2xD4.S3192,1353

Semidirect products G=N:Q with N=D4.S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D4.S31C22 = D813D6φ: C22/C1C22 ⊆ Out D4.S3484D4.S3:1C2^2192,1316
D4.S32C22 = SD1613D6φ: C22/C1C22 ⊆ Out D4.S3484D4.S3:2C2^2192,1321
D4.S33C22 = D811D6φ: C22/C1C22 ⊆ Out D4.S3484D4.S3:3C2^2192,1329
D4.S34C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out D4.S3248+D4.S3:4C2^2192,1331
D4.S35C22 = D84D6φ: C22/C1C22 ⊆ Out D4.S3488-D4.S3:5C2^2192,1332
D4.S36C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out D4.S3488-D4.S3:6C2^2192,1335
D4.S37C22 = C2×D8⋊S3φ: C22/C2C2 ⊆ Out D4.S348D4.S3:7C2^2192,1314
D4.S38C22 = C2×D83S3φ: C22/C2C2 ⊆ Out D4.S396D4.S3:8C2^2192,1315
D4.S39C22 = C2×S3×SD16φ: C22/C2C2 ⊆ Out D4.S348D4.S3:9C2^2192,1317
D4.S310C22 = C2×D4.D6φ: C22/C2C2 ⊆ Out D4.S396D4.S3:10C2^2192,1319
D4.S311C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out D4.S3484D4.S3:11C2^2192,1326
D4.S312C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out D4.S3484D4.S3:12C2^2192,1327
D4.S313C22 = D85D6φ: C22/C2C2 ⊆ Out D4.S3488+D4.S3:13C2^2192,1333
D4.S314C22 = D86D6φ: C22/C2C2 ⊆ Out D4.S3488-D4.S3:14C2^2192,1334
D4.S315C22 = C24.C23φ: C22/C2C2 ⊆ Out D4.S3488+D4.S3:15C2^2192,1337
D4.S316C22 = C2×D126C22φ: C22/C2C2 ⊆ Out D4.S348D4.S3:16C2^2192,1352
D4.S317C22 = C12.C24φ: C22/C2C2 ⊆ Out D4.S3484D4.S3:17C2^2192,1381
D4.S318C22 = C2×Q8.14D6φ: C22/C2C2 ⊆ Out D4.S396D4.S3:18C2^2192,1382
D4.S319C22 = D12.32C23φ: C22/C2C2 ⊆ Out D4.S3488+D4.S3:19C2^2192,1394
D4.S320C22 = C2×Q8.13D6φ: trivial image96D4.S3:20C2^2192,1380
D4.S321C22 = D12.33C23φ: trivial image488-D4.S3:21C2^2192,1395
D4.S322C22 = D12.34C23φ: trivial image488+D4.S3:22C2^2192,1396

Non-split extensions G=N.Q with N=D4.S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D4.S3.C22 = D8.10D6φ: C22/C1C22 ⊆ Out D4.S3964-D4.S3.C2^2192,1330
D4.S3.2C22 = SD16.D6φ: C22/C2C2 ⊆ Out D4.S3968-D4.S3.2C2^2192,1338
D4.S3.3C22 = D12.35C23φ: C22/C2C2 ⊆ Out D4.S3968-D4.S3.3C2^2192,1397

׿
×
𝔽